

Application

The HBTR-551 is an isolation damper designed for isolation and decontamination applications. The damper has bubble tight leakage performance per AMCA 500-D up to 30 in. wg (7.5 kPa). The damper frame is flanged for easy mounting and the blade seal is mechanically fastened to the blade.

Ratings

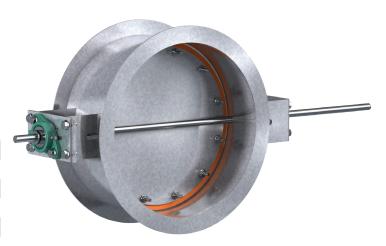
Leakage

Bubble tight per AMCA 500-D

Pressure*

40 in. wg (10 kPa) - differential pressure

Velocity*


6500 fpm (33 m/s)

Temperature*

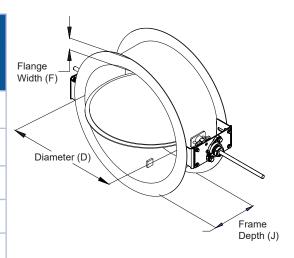
-40 to 250°F (-40 to 121°C)

Construction

	Standard	Optional		
Frame Depth (C)	See chart on page 2			
Frame Material	Painted	304SS, 316SS		
Frame Type	Flanged Channel			
Frame Thickness	See chart on page 2			
Flange Width (D)	see chart on page 2			
Blade Material	Painted	304SS, 316SS		
Blade Seals	Silicone rubber, field removable			
Blade Thickness	see chart on page 2			
Blade Type	Reinforced butterfly, field replaceable			
Axle Diameter	see chart on page 2			
Bearings	Relubricable ball, outboard mounting			
Axle Material	Plated steel	303SS, 316SS		
Axle Seals	Double gland stuffing box			
Paint Finishes	Hi Pro Polyester	Industrial Epoxy, Mill finish (304SS or 316SS)		
Mounting Holes	None	Standard		

*Actual Inside Dimension

Size Limitations

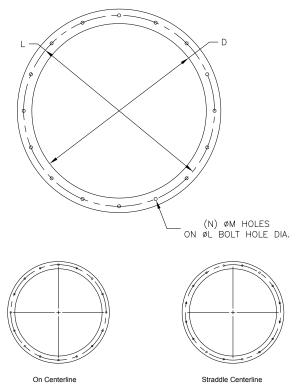

WxH	Minimum Size	Maximum Size	
Inches	12	48	
mm	305	1219	

Options:

- Mounting holes in flanges
- Actuators
- Limit switches
- Special construction
- Temperatures greater than 250°F (121°C), consult factory.

Dimensions

Diameter (D)		Frame	Frame	Flange	Axle	Blade	
Inches (mm)		Depth J	&	Width F	Diameter	Thickness	
Above	Through	Inches (mm)	Flange gauge (mm)	Inches (mm)	Inches (mm)	gauge (mm)	
6	12	6	.188	1.5	0.75	.188	
(152)	(305)	(152)	(4.8)	(38)	(19)	(4.8)	
12	18	8	.188	1.5	0.75	.188	
(305)	(457)	(203)	(4.8)	(38)	(19)	(4.8)	
18	24	8	.188	1.5	1	.188	
(457)	(610)	(203)	(4.8)	(38)	(25)	(4.8)	
24	27	8	.188	2	1	.188	
(610)	(686)	(203)	(4.8)	(51)	(25)	(4.8)	
27	39	8	.188	2	1.25	.188	
(686)	(991)	(203)	(4.8)	(51)	(32)	(4.8)	
39	42	8	.188	2	1.5	.188	
(991)	(1067)	(203)	(4.8)	(51)	(38)	(4.8))	
42	48	8	.25	2	1.5	.188	
(1067)	(1219)	(203)	(6)	(51)	(38)	(4.8)	


Mounting Holes

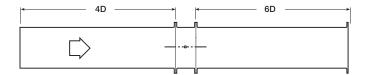
Standard - Does not include mounting holes

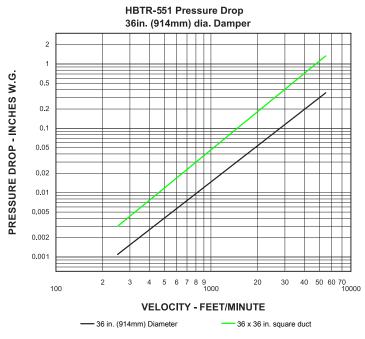
Optional - Bolt holes in both flanges

Greenheck recommended bolt hole pattern is shown in the table below. Customer must specify bolt holes that are parallel to the axle centerline (P) or that straddle the axle centerline (S) as shown in the diagrams below. Greenheck can also provide bolt hole sizes and patterns other than those shown below.

Greenheck Recommended Bolt Hole Pattern (Bolt Holes Parallel to Axle Centerline)						
Diameter Inches (mm)		Number	Mounting Hole	Bolt Circle	Degrees	
Above	Through	of Holes	Diameter in. (mm) N	Diameter L	Between Holes	
6 (152)	8 (203)	4	³ / ₈ (9.5)	*	90	
8.001 (203)	18 (457)	8	7/ ₁₆ (11)	*	45	
18.001 (457)	24 (610)	12	⁷ / ₁₆ (11)	*	30	
24.001 (610)	36 (914)	16	⁷ / ₁₆ (11)	*	22½	
36.001 (914)	48 (1219)	24	⁷ / ₁₆ (11)	*	15	
* Bolt Circle Diameter = Damper Diameter + Flange Height + 1/4 in. (6mm)						

Performance Data


Pressure Drop Data

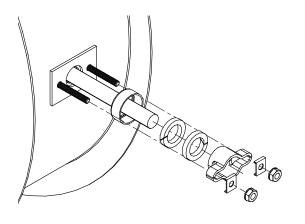

This pressure drop data was conducted in accordance with AMCA 500-D using Test Figure 5.3. All data has been corrected to represent standard air at a density of 0.075 lb/ft³ (1.2 kg/m³).

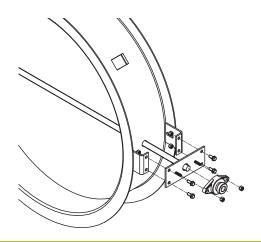
Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop information along with an analysis of other system influences should be used to estimate actual pressure losses for a damper installed in a given HVAC system.

AMCA Test Figure 5.3

Figure 5.3 illustrates a fully ducted damper. This configuration has low pressure drop because entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

Leakage


Every HBTR-551 is leakage tested at 30 in. wg (7.5 KPa) in accordance with AMCA 500-D before it leaves the factory. Greenheck does not ship a HBTR-551 unless it meets the requirements of the standard.


Axle Seal Detail

The double gland axle seal is mounted externally for easy access and provides bubble tight performance.

Bearing Detail

The ball bearings are mounted outboard for easy access. The bearing comes with a grease fitting, allowing for easy lubrication (axle seals included but not shown in bearing detail).

INSTALLATION

TRIFOLD

PRODUCT INFO

CATALOG

INDUSTRIAL DAMPER SELECTION GUIDE

DAMPER SELECTION GUIDE

SPECIFICATIONS

WARRANTY