

A Participating Corporation in the ARI 1060 Certification Program

What is it?

Certified for what?

Why is this important?

True of False?

What should you do?

For more information:

Proof that the energy recovery ventilator contains an ARI Standard 1060 **certified** energy transfer component (wheel, plate or heat pipe).

- 1) Energy Transfer Effectiveness (sensible, latent, and total)
- 2) Cross leakage
- 3) Pressure drop

So that engineers and owners can be assured that they are actually getting the published performance.

Unfortunately, some manufacturers publish non-certified energy transfer ratings that are as much as 15 percentage points above actual performance.

The following statements mean the same thing: A) . . . tested in accordance with ARI Standard 1060 B) . . . Certified to ARI Standard 1060

False: "Certified" means actively policed by ARI, including annual check tests. "In accordance with" means basically nothing.

Get "ARI Certified" spec'd! Protect your customers and keep our competitors honest.

www.ari.org/directories/erv

Get these spec'd, also!

AMCA Licensed Air Performance

UL Listed

Energy Recovery Quick Reference Guide

	ERM	MiniVent	ERV	ERH	HRE	ERCH	ERT
Recovery							
Sensible (polymer) Latent (silica gel)	X X	X X	X X	X X	Х	X X	X X
Heating Options							
Hot Water Indirect Gas Electric Wrap Around Heat Pipe				X X X	X X X	X X X	X X X
Cooling Options							Λ
Chilled Water Direct Expansion (DX) Direct Evap. Indirect Evap.					X X	X X	X X
CFM Maximum							
	10,000	750	12,000	10,000	10,000	10,000	10,000
Blower Type							
Forward Curved Backward Inclined		Х	Х	Х	Х	Х	Х

ERM - Energy recovery module utilized in builtup ventilation systems to reduce tonnage requirements.

MiniVent - Low cost, indoor unit designed to reduce tonnage requirements to a single dedicated space such as a classroom or conference room.

ERV - Complete energy recovery package that significantly reduces tonnage requirements especially in high wet bulb design areas such as the Southeast.

ERH - Combines energy recovery with additional capacity for post-heat for areas such as the Midwest.

		ERM	MiniVent	ERV	ERH	HRE	ERCH	ERT
Model Size	CFM Max	Energ	y Recovery	Only				
450 750 251 361 521 581 522 582	450 750 1100 2200 4300 5800 9000 12000	Х	X X	X X X X X X X				
					Tempe	ered Ene	ergy Reco	overy
20 45/52 55/58 64 90/74	2200 4500 6000 6800 10000	X X X			X X X X	× × ×	X X X	× × × ×

HRE - Recovery unit designed to recover sensible energy and utilize indirect and direct evaporative cooling to cool outdoor air with relatively high dry bulb and low wet bulb designs (West coast states).

ERCH - Significantly reduces tonnage requirements with additional capacity to cool and post-heat allowing 100% processing of outdoor air to desired supply conditions.

ERT - Same benefits as ERCH but designed with backward inclined blowers to allow for higher external static pressure requirements. Wrap around heat pipe option.

